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Abstract
We study a physical model of the O(3)-invariant coupled integrable
dispersionless equations that describes the dynamic of a focused system within
the background of a plane gravitational field. The investigation is carried
out both numerically and analytically, and realized beneath some assumptions
superseding the structure constant with the structure function implemented
in Lie algebra and quasigroup theory, respectively. The energy density and
topological structures such as loop soliton are examined.

PACS numbers: 05.45.Yv, 02.70.Pt

1. Introduction

Nonlinear equations play a central role in modern science. In particular, ordinary differential
equations (ODEs) and partial differential equations (PDEs) of nonlinear type are very often
encountered in the theoretical description of a broad variety of phenomena and processes.
Examples are found in various disciplines such as classical mechanics, biology, chemistry and
electronics, to name a few.

In addition, the focal point of the study of any nonlinear PDE is the question of its
integrability. There exist three approaches to this question namely: Lie analysis, numerical
studies and Painlevé analysis. The third analysis requires that the nonlinear PDE is integrable
if and only if it possesses the Painlevé property [1].

During the past several years, it has been seen that the study of nonlinear evolution
equations has attracted many mathematicians and theoretical physicists due to its considerable
applications in various branches of science [2]. The study of nonlinear phenomena has been
very interesting and challenging mathematically and physically in recent years. Considerable
interest has been paid recently to dispersionless or quasiclassical limits of integrable equations
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and hierarchies [3]. Study of dispersionless hierarchies is of great importance since they arise
in the analysis of various problems in physics, mathematics and applied mathematics from
the theory of conformal maps on the complex plane. Different methods have been used to
study dispersionless equations and hierarchies [3]. In particular, several (1+1)-dimensional
equations and systems have been analysed by the quasiclassical version of the inverse scattering
transform (IST), including the local Riemann–Hilbert problem approach.

The dispersionless integrable hierarchies can be viewed as quasiclassical limit of the
ordinary integrable systems [4]. A typical example is the dispersionless Kadomtsev–
Petviashvili (dKP) hierarchies which have played an important role in theoretical and
mathematical physics [5]. The Lax formulation of the dKP hierarchy can be constructed
by replacing the pseudodifferential Lax operator of KP with the corresponding Laurent series.
On the other hand, an analogous construction can be made for the modified KP (mKP)
hierarchy and thus leads to the dmKP hierarchy.

The singular point structure analysis leading to the Painlevé (P-)property for ordinary
differential equations [6] plays a very useful role in determining the integrability property
of nonlinear dynamical system [7, 8]. Weiss et al [9] reformulated and generalized the P-
test for PDEs [10]. When compared with the uncoupled systems, many coupled systems
are not completely analysed because of the complicated and tedious mathematical analysis
involved in understanding the nature of their dynamics. However, the P-analysis of the
coupled nonlinear Schrödinger (NLS) equation, higher order coupled NLS, nonlinear coupled
Klein–Gordon equation [11], inhomogeneous coupled NLS, nonlinear coupled integrable
dispersionless equations [12], and so on, have been investigated.

In recent past years, the integrable system of coupled integrable dispersionless equations
has been studied by many authors [13, 14]. Some authors [13] have presented and solved the
above system by the IST technique. From this method, they solved the Gel’fang–Levitan
equations. Kotlyarov [15] proved that these integrable models are gauge equivalent to
the sine-Gordon and Pohlmeyer-Lund-Regge models. Again, Konno and Kakuhata have
investigated the IST method and obtained the soliton solutions for growing, decaying and
stationary solutions. Investigation among the solitary waves and their integrability properties
are considered. In another paper, the same authors have solved the system by the IST
method and discussed one- and two-soliton solutions. Even though the coupled integrable
dispersionless equations are known to be completely integrable, their P-property has been
established. The remarkable feature of the P-analysis, particularly for soliton solutions, is that
a natural connection exists between Lax pair, Bäcklund transform (BT), Hirota bilinear form
and Miura transformation which can be constructed through the expansion of the solutions
about the singularity manifold.

The IST scheme for soliton equations is a powerful tool for obtaining N-soliton solutions
and an infinite number of conserved quantities. The most famous one is the ZS-AKNS scheme
[16, 17]. Many inverse scattering schemes, such as the ZS-AKNS and its varieties, have 2 × 2
matrix form. There are, however, fewer generalizations of them to 3×3 or higher dimensional
matrix forms. It is interesting to hunt for soliton equations with a general n × n inverse
scattering scheme.

Recently, some authors [18] proposed a generalized coupled dispersionless system
given by

∂2
txS + [∂xS, [S,G]] = 0, (1)

where the matrix S = S(t, x) and the constant matrix G are elements of an arbitrary non-
Abelian Lie algebra. This equation has the n×n ZS-AKNS-type IST scheme and nonlinearity
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comes from the non-Abelian character. Equation (1) is a generalization of the coupled
integrable, dispersionless equation

∂2
txq + 1

2∂x(rs) = 0, ∂2
txr − r∂xq = 0, ∂2

txs − s∂xq = 0, (2)

based on a group-theoretical point of view. For SU(1, 1) ∼ O(2, 1) ∼ SL(2, R), equation (1)
reproduces (2). For SU(2) ∼ O(3), we can obtain

∂2
txq + 1

2∂x(rr
�) = 0, ∂2

txr − r∂xq = 0, ∂2
txr

� − r�∂xq = 0, (3)

which can be equivalent to the Pohlmeyer-Lund-Regge system. Note that the star refers to
conjugation. Equations (2) and (3) have been solved by the IST scheme under the appropriate
boundary conditions and shown to be integrable. They have the important conserved quantities

∂xq
2 + ∂xr∂xs = q2

0 , ∂xq
2 + ∂xr∂xr

� = q2
0 , (4)

which are obtained from the IST scheme. Here q0 = ∂xq(±∞) is constant.
Furthermore, some connection of theoretical physics with a nonassociativity algebra

and differential geometry has been established. This connection has helped solving many
problems in physics. Indeed, during the last 30 years quite remarkable relations between the
nonassociative algebra and differential geometry have been discovered. Such exotic structures
of algebra as quasigroups and loops were obtained from purely geometric structures such as
affinely connected spaces. The notion of odule was introduced as a fundamental algebraic
invariant of differential geometry. For any space with an affine connection, loopuscular,
odular and geoodular structures (partial smooth algebra of a special kind) were introduced and
studied. There are now three main approaches in theoretical physics exploring the notion of a
nonassociativity system:

• octonionic approach;
• Lie-admissible approach;
• quasigroup approach.

We will focus only on the last. It is essentially based on new nonassociative algebraic methods
in differential geometry where the local properties of some global continuous structures such
as quasigroups, loops, etc., have been studied. The recent development has demonstrated that
also various nonassociativity systems, such as quasigroups, loops, odules, etc., play important
roles in geometry and also in physical applications.

In physics, the main stimulation of the quasigroup approach is provided by modern gauge
theories, quantum gravity and some attempts of extension or generalization of the classical
method of symmetry and invariance. Here we shall make some brief comments about these
directions.

Nowadays, gauge theories based on continuous (Lie) groups have become an essential part
of modern theoretical physics providing the unified treatment of fundamental forces of nature
through the localization (gauging) of the global group symmetry. Recently, this approach has
been generalized for quasigroups by some authors [19].

Recently, a purely algebraic formulation of differential geometry, nonlinear geometric
algebra, has been elaborated by some authors [20, 21]. In this approach, nonassociativity
appears as an algebraic equivalent of the geometrical notion of curvature. This geometric
algebra provides a new algebraic approach to the theory of gravity, where the spacetime is
considered as an algebraic system with a geodesic multiplication of points in a certain way.
The curvature of spacetime is then expressed by the nonassociativity of this multiplication.
There is hope for arranging another attack upon the most actual problem of gravity—the
quantization of gravity.
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Our aim in this paper is to reconsider some differential system of equations modelling the
behaviour of a charged particle within a magnetic field, and to undergo some computations both
analytically and numerically from a curved-space perspective. In this view, our work is planned
as follows. In section 2, we review the smooth loop theory briefly, then a generalization of
the system under our interest is given in section 3. Next, some application is done in section 4
dealing with the background of a weak plane gravitational wave. Lastly, we end our work
with some concluding remarks.

2. Smooth loop

2.1. Basic smooth structures

2.1.1. Smooth local loops (loopusculas)

2.1.1.1. Definition. Let ϕ : M × · · · × M be a partial m-ary operation on a Ck-smooth
manifold M such that ϕ(a1, . . . , am) = b (i.e. ϕ is defined on a1, . . . , am) [20] then there
exist open sub-manifolds U1, . . . , Um containing a1, . . . , am respectively, ϕ being defined on
U1 ×· · ·×Um and the restriction ϕ|U1×···×Um

: U1 ×· · ·×Um −→ M is a Cr -smooth mapping
(r � k) . Then ϕ is said to be a Cr -smooth partial m-ary operation on Ck-smooth manifold.

If ϕ is defined everywhere on M then we say that ϕ is a Cr -smooth global m-ary operation.
A Ck-smooth manifold M equipped with a family of Cr -smooth partial (global) operations

(r � k) and a family of constants (fixed elements) is called a Cr,k-smooth partial (global)
algebra (Cr -smooth partial algebra if r = k).

2.1.1.2. Definition. Let 〈M, ·, ε〉 be a partial magma (groupoid) with a binary operation
(x, y) �−→ x · y and the neutral element ε,M being a Ck-smooth manifold and the operation
of multiplication (at least C1-smooth) being defined in some neighbourhood U � ε [20]. As
is known, the above operation is locally left and right invertible i.e. if x · y = Lxy = Ryx then
in some neighbourhood of the neutral element ε there exist L−1

x and R−1
x . This will allow us

to introduce left and right division

a \ x = L−1
a x, x/b = R−1

b x, (5)

with properties

a · (a \ x) = x, (x/b) · b = x,

a \ (a · x) = x, (x · b)/b = x.
(6)

Thus we have, indeed, a partial loop on M.

2.1.2. Canonical odules and odular structures

2.1.2.1. Definition. Let 〈Q, ·, \, ε〉 be a partial left loop with two-sided neutral ε defined
on Ck-smooth manifold Q(dimQ = n) [20]. We say that A1, . . . , An are the left basic
fundamental vector field of Q if

[Aα(x)]β = Aβ
α(x)

=
[
∂(x · y)β

∂yα

]
y=ε

. (7)

Any A = ζ αAα(ζ 1, . . . , ζ n ∈ R) is called a left fundamental vector field in the case.
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2.1.2.2. Definition. Let Q be a Ck-manifold. A partial left loop 〈Q, ·, \, ε〉 is called a
left(, k)-canonical (p � 1) if Lx : y �−→ x · y is C1-smooth near ε and its left fundamental
vector fields are Cp-smooth near ε. In the case p = 1 , we say left canonical instead of left
(p, k)-canonical. Analogously [20] one can define a right (p, k)-canonical loop, replacing the
left basic fundamental vector field by right ones, a1, . . . , an such that

[aα(y)]β = aβ
α (y)

=
[
∂(x · y)β

∂xα

]
x=ε

. (8)

2.2. Infinitesimal theory of smooth loop: general theory

2.2.1. Determination of ϕα and l̃αβ . Let 〈Q, ·, ε〉 [20] be a smooth partial loop with the
neutral ε. Let us introduce the following notations:

Lab = a · b, l(a, b) = L−1
a·yoLaoLb, l̃(a, b) = [l(a, b)]�,ε,

Aα
β(a) = [(La)�,ε]αβ, Bλ

µ(a) = [
(La)

−1
�,ε

]λ

µ
,

(9)

where α, β, λ, µ = 1, . . . , n = dim M . Differentiating the relation (a ·b) · l(a, b)c = a ·(b ·c)
by c at c = ε, we have

∂(a · b)λ

∂bµ
= Aλ

γ (a · b)̃lγσ (a, b)Bσ
µ(b). (10)

Let us introduce the vector fields Aγ and covector fields Bν by formulae

(Aγ (a))λ = Aλ
γ (a), (Bν(a))β = B

µ
β (a), (11)

[Aα,Aβ](a) = C
γ

αβ(a)Aγ (a), C
γ

αβ = −C
γ

βα, (12)

where C
γ

αβ are defined as the structure functions of point. Following equation (12), we get the
relation

Aγ
α(a)∂γ Aλ

β(a) − A
γ

β(a)∂γ Aλ
α(a) = C

γ

αβ(a)Aλ
γ (a), (13)

which is equivalent to

Bν
λ(a)

[
Aγ

α(a)∂γ Aλ
β(a) − A

γ

β(a)∂γ Aλ
α(a)

] = C
γ

αβ(a), (14)

or briefly

Bν([Aα,Aβ ]) = C
γ

αβ. (15)

Using Jacobi’s identity

[Aα, [Aβ,Aγ ]] + [Aγ , [Aα,Aβ ]] + [Aβ, [Aγ ,Aα]] = 0, (16)

we have

Aσ
<α(a)∂|σ |C

µ
βγ>(a) + C

µ

<α|ν|(a)Cν
βγ>(a) = 0. (17)

(Here 〈α, β, γ 〉 means the cyclic sum over α, β, γ )
Assuming that

∂2(a · b)α

∂bν∂bµ
= ∂2(a · b)α

∂bµ∂bν
, (18)

we obtain

Aσ
ν (b)

∂̃l
γ
µ(a, b)

∂bσ
− Aσ

µ(a)
∂̃l

γ
ν (a, b)

∂bσ
= Cσ

νµ(b)̃lγσ (a, b) − C
γ

τλ(a · b)̃lτν (a, b)̃lλµ(a, b). (19)
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In particular at b = ε, we have

Cγ
νµ(a) = Cγ

νµ(ε) +

[
∂̃ l

γ
ν (a, b)

∂bµ
− ∂̃ l

γ
µ(a, b)

∂bν

]
b=ε

. (20)

This result is of good promise since it gives an assessment of the value of the structure function
on a given manifold.

2.2.2. Proposition. Let 〈Q, ·, ε〉 be a smooth partial loop. Then ϕα = (a · b)α and
l̃
γ
µ = l̃

γ
µ(a, b) are the solutions of the system of differential equations [20]

∂ϕα

∂bµ
= Aα

γ (ϕ)̃lγσ Bσ
µ(b),

Aσ
ν (b)

∂̃lαµ

∂bσ
− Aσ

µ(b)
∂̃lαν

∂bσ
= Cσ

νµ(b)̃lασ − Cα
τλ(ϕ)̃lτν̃ lλµ,

ϕα|ε = aα, l̃ντ

∣∣
ε
= δν

τ .

(21)

The functions Aα
γ (b) are supposed to be given and satisfy the conditions Aα

γ (ε) = δα
γ .

Remark 1. There exist some link between the structure function and the curvature tensor of a
manifold [20]. Let us introduce the following infinitesimal right and left translation matrices

(x · y)µ = yµ + Lµ
ν (y)xν + · · · ,

(x · y)µ = xµ + Rµ
ν (x)yν + · · · ,

(22)

with Lµ
ν (y) = ∂(x·y)µ

∂xν

∣∣
x=e

and Rµ
ν (x) = ∂(x·y)µ

∂yν

∣∣
y=e

. Matrices Rµ
ν (x) and Lµ

ν (y) can be used to
introduce a local frame field

Rν(x) = Rµ
ν (x)∂µ, Lν(y) = Lµ

ν (y)∂µ. (23)

It is well known that for two vector fields, their commutator is a vector field. We know
that Lν(x) and Rν(x) are frame fields, so it is quite natural to define the structure functions
λ

γ
µν(x) and C

γ
µν(x) by

[Lµ(x), Lν(x)] = −λγ
µν(x)Lγ (x), (24)

[Rµ(x), Rν(x)] = −Cγ
µν(x)Rγ (x). (25)

In general, the structure functions λ
γ
µν(x) and C

γ
µν(x) do not coincide. Those functions

have expansions

λγ
µν(x) = −R

γ

[µν]δ(e)x
δ + · · · , (26)

Cγ
µν(x) = −R

γ

δ[µν](e)x
δ + · · · . (27)

The commutator of two frame fields can also be calculated

[Lµ(x), Rν(x)] = − 1
2R

γ

µδν(e)y
δ∂γ + · · · . (28)

Here R
γ

µδν(e) denotes components of the curvature tensor at the unit element e.
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3. The extent generalized coupled dispersionless system

Let G be a simple extent Lie group, dim G = n, and G be its extent Lie algebra. The generators
T a(x) of G (where x = (xµ, µ = 0, 1, . . .)) satisfy the commutation relation with the structure
function [21] Cab

c (x) such that

[T a(x), T b(x)] = Cab
c (x)T c(x), (29)

and the Cartan metric ηab defined by

ηab = Tr(T aT b). (30)

Without any loss of generality, we can take ηab as diagonal and Cab
c (x) as totally antisymmetric;

with T a’s we define S by

S = φa(x)T a(x)

= ηabφ
a(x)T b(x), (31)

where φa = φa(x, t) is a vector field with components (φ1, φ2, . . . , φN) and ηab is the inverse
matrix of ηab. We also define a matrix function M as

M = ka(x)T a(x), (32)

with an analytical vector ka = (k1, k2, . . . , kN). These quantities are rotated by the global
gauge transformation

S ′ = �−1S�, M′ = �−1G�, (33)

where � ∈ G.
Let us write the action of the generalized coupled dispersionless system [22] as

I =
∫

dt dxL(S, ∂µS, ∂0S), (34)

where L is the Lagrangian density defined by

L = ε
µ

0 Tr
(

1
2∂µS∂0S − 1

3M[S, [∂µS, S]]
)
. (35)

Note that the ε-character represents the Levi-Civita symbol. The Lagrangian density is
manifestly invariant under the global gauge transformation (33). By using the Euler–Lagrange
equation, we obtain

ε
µ

0

(
∂2

0µS − [[S,M], ∂µS]
) = 0. (36)

From equation (36), we show that Tr(∂µS)n is conserved for integer n (n � 2) and is also
invariant under gauge transformation. Equation (36) is known as the generalized coupled
dispersionless system [22]. Positing ∂µT a = Ba

µcT
c and ∂µT a = Da

µcT
c we get

[S,M] = φakbC
ab
c T c,

[[S,M], ∂µS] = {
(∂µφd)φekbC

eb
c Cdc

a + φdφekbC
eb
c Bd

µf Cf c
a

}
T a

∂µ∂0S = {
∂µ∂0φa + Db

0a∂µφb + (∂0φd)B
d
µa + φd∂0B

d
µa + (∂0φd)B

d
µbD

d
0a

}
T a,

(37)

and hence

ε
µ

0

{
∂µ∂0φa + Db

0a∂µφb + (∂0φd)B
d
µa + φd∂0B

d
µa + (∂0φd)B

d
µbD

d
0a

+ (∂µφd)φekbC
eb
c Cdc

a + φdφekbC
eb
c Bd

µf Cf c
a

} = 0. (38)
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We consider the case of a single j -coordinate and set

Cab
c = ıf ab

c q(xj ), Ba
µb = εa

µbu(xj , t),

Db
0a = εb

0av(xj , t), τ = xj − ξx0, σ = xj + ξx0,
(39)

where u, v, q are arbitrary functions and ξ a constant. By a suitable redefinition of x0 leading
to ξ = 1, it comes

∂2
σφ − ∂2

τ φ − q2(∂σφ + ∂τφ) × (φ × k) = (u + v)∂σ� + (v − u)∂τ�

+ (∂σ u − ∂τ v)� + uvϕ − q2u [� × (φ × k)] , (40)

where �a = εb
aφb and ϕa = εb

a (∂σ�b − ∂τ�b).
We emphasize here that the case u = 0, v = 0, q = 1 was already obtained in [22]; using

Hirota’s method with restrictions on second-order expansions, loop solitons were derived as
the essence of the response of elastica matter to focusing excitations. Let us give briefly the
basic start points used. With the following settings

φ1 = W

F
, φ2 = H

F
,

φ3 = σ + 2(∂τ − ∂σ ) ln F,

(41)

one derives the following bilinear equations:(
D2

τ − D2
σ + 1

)
F · W = 0,

(
D2

τ − D2
σ + 1

)
F · H = 0,

(Dτ − Dσ)2F · F − 1
2 (W 2 + H 2) = 0,

(42)

where Ds denotes Hirota’s derivatives. This system is equivalent to

WFττ + FWττ − WFσσ − FWσσ − 2FτWτ + 2FσWσ + FW = 0,

HFττ + FHττ − HFσσ − FHσσ − 2FτHτ + 2FσHσ + FH = 0,

2
(
FFττ + FFσσ − F 2

σ − F 2
τ

) − 1
2W 2 − 4(FFστ − FτFσ ) = 0.

(43)

Then we expand F,W,H into convenient power series to derive loop structures [22]. Instead
of using the previous analytic technique which does not work easily with complex-related
systems, we can try some numerical method suitable with some boundary conditions. We can
look for solitary waves by setting s = σ − �τ . Therefore,

d2φ

ds2
− q2

1 + �

dφ

ds
× (φ × k) =

(
u

1 − �
+

v

1 + �

)
dφ

ds

+
�

1 − �

du

ds
+

uvϕ

1 − �2
− q2u

1 − �2
[� × (φ × k)], (44)

with � being a phase velocity.
Now, according to the usual procedure, the Hamiltonian H is given by

H =
∫

dx H, (45)

with H being the Hamiltonian density defined by

H = ∂0φ · π − L
= Tr

(
1
3M[S, [∂µS, S]]

)
, (46)
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π is the canonical conjugate momentum to φ. This gives

H = −q2

3
k · [φ × (∂jφ × φ + u� × φ)] − uv�c�

c − (u + v)�bφb. (47)

It is noteworthy to emphasize here that the symbol (·) denotes the inner product defined by
ϕ · ψ = ϕaψa and (×) the exterior product defined by (ϕ × ψ)c = εab

c ϕaψb.
Let us consider φ = (φ1, φ2, φ3) and k = (0, 0, 1); therefore

� = (φ3 − φ2, φ1 − φ3, φ2 − φ3), (48)

� × (φ × k) = (
φ1φ2 − φ2

1 , φ
2
2 − φ1φ2, φ2φ3 − φ1φ3

)
, (49)

ϕ =
(

dφ3

ds2
− 2

dφ1

ds
+

dφ2

ds
,

dφ1

ds2
− 2

dφ2

ds
+

dφ3

ds
,

dφ2

ds2
− 2

dφ3

ds
+

dφ1

ds

)
. (50)

Besides, by setting

F(a, b) =
(

u

1 − �
+

v − 2uv

1 + �

)
da

ds
+

uv

1 + �

db

ds
− q2u

1 − �2
(ab − a2),

G(a, b) = uv − q2a

1 + �

da

ds
+

uv − q2b

1 + �

db

ds
+

b − a

1 − �

du

ds
,

H1(a, b, c) = uv + q2a

1 + �

dc

ds
+

c − b

1 − �

du

ds
,

H2(a, b, c) = uv + q2b

1 + �

dc

ds
+

a − c

1 − �

du

ds
,

I (a, b, c) =
(

u

1 − �
+

v − 2uv

1 + �

)
dc

ds
− q2u

1 − �2
(bc − ac),

(51)

we write

d2φ1

ds2
= F(φ1, φ2) + H1(φ1, φ2, φ3),

d2φ2

ds2
= F(φ2, φ1) + H2(φ1, φ2, φ3),

d2φ3

ds2
= G(φ1, φ2) + I (φ1, φ2, φ3).

(52)

Also, using the inner and exterior products defined above, we obtain

H = −q2

3

{
|φ|2

[
(1 − �)

dφ3

ds
+ u(φ2 − φ1)

]
− φ3(1 − �)

d|φ|2
ds

}
− 2uv

(|φ|2 + φ2
3 − φ1φ2 − φ1φ3 − φ2φ3

)
, (53)

which is the Hamiltonian density of the system. Note here that |φ|2 = φ2
1 + φ2

2 .

4. Some illustration: in the background of a weak plane gravitational wave

Now we give some illustrative values of u, v, q derived from the quantum kinematics survey
of some test particle in the background of a weak plane gravitational wave. The metric tensor
of the space-time of a weak plane gravitational wave can be given as perturbations around the
Minkowski metric [23].

gµν = ηµν + hµν, ηµν = diag(−1, +1, +1, +1). (54)
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Figure 1. One-loop soliton and energy density in nonperturbed medium.
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Figure 2. One-loop soliton and energy density in perturbed medium.

In the case of a polarized weak plane gravitational wave moving in the direction of xj the only
non-zero component of hµν in the TT-gauge are, for example,

h22 = −h33 = A cos ω(x0 − x1), (55)

for j = 1. Here A = const, A 	 1, is the wave amplitude. We posit that u, v and q are
depending linearly on scalar curvature. Therefore we set

q(s) = 1 + δA2 sin2 ωs, u(s) = ηA2 sin2 ωs, v(s) = νA2 sin2 ωs, (56)

where δ, η, ν are some arbitrary constants. Some curves are then derived.
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Figure 3. Two-loop soliton and energy density in nonperturbed medium.
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Figure 4. Two-loop soliton and energy density in perturbed medium.

We try some numerical method to plot some curves. As previously done with the loop
soliton above in [22], we do consider the same boundary conditions . We will consider two
major cases: the first one refers to the absence of perturbation that is ω = 0. In this case, we
try a set of plots which will be compared to those obtained analytically from Hirota’s method;
the second case deals with the influence of the perturbation, that is ω 
= 0. Here we compare
some curves we derived with the previous ones related to ω = 0. This may help us assess the
genuine role of the angular frequency.

By the way, considering figures 1, 3, 5 and 7 which present plots of φ1 ≡ X versus
φ3 ≡ Z and energy density versus Z, we see one-, two- and three-loop-shaped self-confined
structures. This is obtained for angular frequency ω = 0. For the one-loop, we chose a phase
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Figure 5. Three-loop soliton and energy density in nonperturbed medium.
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Figure 6. Three-loop Soliton and energy density in perturbed medium.

velocity of v = 0.6, v = 0.8 for the two-loop, v = 0.0 and v = 0.2 for the two other. These
figures present some fitness between the two methods used so far. The two- and three-loop
may be interpreted as the interaction between the two and three single one-loop structure
identified previously. With the plot of the energy density, we can get some assessment of the
relative stability of the two and three single one-loop solitons interacting. It is worth pointing
that for other suitable choices of the phase velocities, one may obtain some N-loop structures
of interactions. Furthermore, we have found that we may only obtain some loop structures
for absolute velocities less than one. This fits well with the above analytical method from
Hirota’scheme perspective.

Now, we consider the second case where we choose ω = 100. We then get figures 2,
4, 6 and 8. Comparing these plots to the previous ones of the case ω = 0, there are some
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Figure 7. Three-loop soliton and energy density in nonperturbed medium.
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Figure 8. Three-loop soliton and energy density in perturbed medium.

important changes on the shapes. In fact, for ω = 100, we have chosen a real small amplitude
of perturbation compared to one. In figure 2, one may see how the small perturbations actions
have shifted left-hand side the one-loop soliton leading by this way to a small stretching
of the loop. In figure 4, these perturbations have created some distortion on the two-loop
case creating two more single loops travelling along the big one. In contrast to the previous
case, the effect of the small perturbations on the three-loop soliton as shown in figure 6 is
to shift the two single one-loop in the opposite direction so that they would collide with the
unmovable centre one. As shown in figure 2, there has been some creation of two more
one-loop solitons travelling along two big ones. Then for this velocity of v = 0.2, the effect
of small perturbations is really important as it is the case of the previous two-loop. It should
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be noticeable here that the effect of these small perturbations are really seen on the energy
density plot which for instance tells us whether there has been some new loop-like soliton.

5. Summary

We have given an extension of the Lagrangian [22] giving rise to coupled dispersionless
systems. If we assign the field φα and the constant kα to the position vector r = (X, Y,Z)

of the string and the constant external electric field J respectively, our system behaves like a
charged particle moving in an external magnetic field. In contrast to the KdV-type equations in
which dispersion effect balances the nonlinearity, our system shows that the nonlinear external
force of the dispersionless equations balances the linear elasticity of the string.

With some numerical attempt carried out in this work, we have solved the above nonlinear
coupled system within a spacetime universe from a flat perspective. The introduction of a
perturbation term has rendered this system not easily tractable at all using Hirota’s method.
However, this numerical attempt has confirmed the above result derived from this analytical
method. As it has been seen, the effect of small perturbation seems to shift the structure under
control so that to alter its shape leading to some new structures. This simply means that some
gravitational sources such as the spinning double stars, the supernovae explosion may play an
essential role on dynamic system modelling, since topological space under interest is locally
modified. It is worth noting to see that we could have considered the case of strong fields but
the real problem depends on the physical choice of the structure function characterizing this
field. This constitutes an open investigation.

Finally, we have also been interested on energy density computations. This has helped us
assessing the relative stabilities of some one-loop structures. However, further study in this
way should be made so that the relative stabilities of loop-like structures should be assessed.
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